Nonlinear Soil Response A Reality ?
نویسندگان
چکیده
Geotechnical models consistently indicate that the stress-strain relationship of soils is nonlinear and hysteretic, especially at shear strains larger than 1 0 5 to 10 .4 . Nonlinear effects, such as an increase in damping and reduction in shearwave velocity as excitation strength increases, are commonly recognized in the dynamic loading of soils. On the other hand, these effects are usually ignored in seismological models of ground-motion prediction because of the lack of compelling corroborative evidence from strong-motion observations. The situation is being changed by recently obtained data. Explicit evidence of strong-motion deamplification, accompanied by changes in resonant frequencies, are found in the data from the 1985 Michoacan, Mexico, and the 1989 Loma Prieta, California, earthquakes, the events recorded by the vertical and surface accelerograph arrays in Taiwan, as well as a number of other events throughout the world. Evidence of nonlinear behavior becomes apparent beyond a threshold acceleration of 1 0 0 to 200 gal. Nonlinearity is considerable in cohesionless soil but may be negligible in stiff soils. The findings of recent years indicate that nonlinear site effects are more common than previously recognized in strong-motion seismology.
منابع مشابه
A Numerical Evaluation of Seismic Response of Shallow Soil Deposits
This paper employs one-dimensional numerical ground response analysis models to investigate seismic response of shallow cohesive and non-cohesive soil deposits on vertical propagation of horizontal shear waves. Soil response is modelled by traditional equivalent-linear (EL) frequency-domain analysis using DEEPSOIL software and nonlinear (NL) time-domain analysis using OPENSEES software. The ana...
متن کاملStudy on the Contrast between Two Seismic Response Analysis Programs of Soil Layer
56 ground motions of the bedrock and surface are selected from 28 stiff sites ( site class I and site classⅡ) of the KiK-net station.The peak acceleration, response spectra and shear strain of actual hard sites are calculated by using SHAKE2000 and LSSRLI-1. The similarities and differences between SHAKE2000 and LSSRLI-1 and their differences from measured records are analyzed. It provides a ba...
متن کاملSeismic Evaluation of Flexible-Base Low-Rise Steel Frames Using Beam-On-Nonlinear-Winkler-Foundation Modeling of Shallow Footings
Recent investigations have shown that the influences of Soil-Structure Interaction (SSI) may be detrimental to the seismic response of structure, and hence neglecting this phenomenon in analysis and design may lead to an un-conservative design. The objective of this paper is to quantify the effects of nonlinear soil-structure interaction on the seismic response of a low-rise special moment fram...
متن کاملSEISMIC OPTIMIZATION OF STEEL MOMENT RESISTING FRAMES CONSIDERING SOIL-STRUCTURE INTERACTION
The main purpose of the present work is to investigate the impact of soil-structure interaction on performance-based design optimization of steel moment resisting frame (MRF) structures. To this end, the seismic performance of optimally designed MRFs with rigid supports is compared with that of the optimal designs with a flexible base in the context of performance-based design. Two efficient me...
متن کاملEvaluation of Seismic Behavior of Steel Moment Resisting Frames Considering Nonlinear Soil-structure Interaction
In structural analysis, the base of structures is usually assumed to be completely rigid. However, the combination of foundation and the subsurface soil, makes in fact a flexible-base for the soil-structure system. It is well-known that the structural responses can be significantly affected by incorporating the Soil-structure Interaction (SSI) effects. The aim of the present study is to provide...
متن کاملEffects of the Soil-Foundation-Structure Interaction on the Component Demand Modifier Factor of Concrete Gravity Beams based on ASCE 41-06 Standard
The aim of the present paper is to evaluate the influence of the Soil- Foundation- Structure Interaction (SFSI) effects on the component demand modifier factor of concrete gravity beams based on ASCE 41-06 standard. To this end, the beam on the nonlinear Winkler foundation approach is employed which is a simple and efficient method. At first, four sets of 3-, 6-, 10- and 15-storey concrete mome...
متن کامل